Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38083348

RESUMO

Infrared neural stimulation (INS) is a neuromodulation technique that involves short optical pulses delivered to the neural tissue, resulting in the initiation of action potentials. In this work, we studied the compound neural action potentials (CNAP) generated by INS in five ex vivo sciatic nerves. A 1470 nm laser emitting a sequence of 0.4 ms light pulses with a peak power of 10 W was used. A single 4 mJ stimulus is not capable of eliciting a nerve response. However, repetition of the optical stimuli resulted in the induction of CNAPs. Heat accumulation induced by repetition rates as high as 10 Hz may be involved in the increase in CNAP amplitude. This sensitization effect may help to reduce the pulse energy required to evoke CNAP. In addition, these results highlight the importance of investigating the role of the slow nerve temperature dynamics in INS.


Assuntos
Temperatura Alta , Raios Infravermelhos , Ratos , Animais , Nervo Isquiático/fisiologia , Potenciais de Ação/fisiologia , Potenciais Evocados
2.
J Neural Eng ; 20(4)2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37595607

RESUMO

Objective. In 1/3 of patients, anti-seizure medications may be insufficient, and resective surgery may be offered whenever the seizure onset is localized and situated in a non-eloquent brain region. When surgery is not feasible or fails, vagus nerve stimulation (VNS) therapy can be used as an add-on treatment to reduce seizure frequency and/or severity. However, screening tools or methods for predicting patient response to VNS and avoiding unnecessary implantation are unavailable, and confident biomarkers of clinical efficacy are unclear.Approach. To predict the response of patients to VNS, functional brain connectivity measures in combination with graph measures have been primarily used with respect to imaging techniques such as functional magnetic resonance imaging, but connectivity graph-based analysis based on electrophysiological signals such as electroencephalogram, have been barely explored. Although the study of the influence of VNS on functional connectivity is not new, this work is distinguished by using preimplantation low-density EEG data to analyze discriminative measures between responders and non-responder patients using functional connectivity and graph theory metrics.Main results. By calculating five functional brain connectivity indexes per frequency band upon partial directed coherence and direct transform function connectivity matrices in a population of 37 refractory epilepsy patients, we found significant differences (p< 0.05) between the global efficiency, average clustering coefficient, and modularity of responders and non-responders using the Mann-Whitney U test with Benjamini-Hochberg correction procedure and use of a false discovery rate of 5%.Significance. Our results indicate that these measures may potentially be used as biomarkers to predict responsiveness to VNS therapy.


Assuntos
Epilepsia Resistente a Medicamentos , Estimulação do Nervo Vago , Humanos , Encéfalo , Próteses e Implantes , Eletroencefalografia
3.
Int. j. clin. health psychol. (Internet) ; 23(2): 1-9, abr.-jun. 2023. ilus, tab
Artigo em Inglês | IBECS | ID: ibc-213893

RESUMO

Background: Patients with disorders of consciousness (DoC) are a challenging population prone to misdiagnosis with limited effective treatment options. Among neuromodulation techniques, transcutaneous auricular vagal nerve stimulation (taVNS) may act through a bottom-up manner to modulate thalamo-cortical connectivity and promote patients’ recovery. In this clinical trial, we aim to (1) assess the therapeutic clinical effects of taVNS in patients with DoC; (2) investigate the neural mechanisms underlying the effects of its action; (3) assess the feasibility and safety of the procedure in this challenging population; (4) define the phenotype of clinical responders; and (5) assess the long-term efficacy of taVNS in terms of functional outcomes. Methods: We will conduct a prospective parallel randomized controlled double-blind clinical trial investigating the effects of taVNS as a treatment in DoC patients. Forty-four patients in the early period post-injury (7 to 90 days following the injury) will randomly receive 5 days of either active bilateral vagal stimulation (45 min duration with 30s alternative episodes of active/rest periods; 3mA; 200-300μs current width, 25Hz.) or sham stimulation. Behavioural (i.e., Coma Recovery Scale-Revised, CRS-R) and neurophysiological (i.e., high-density electroencephalography, hd-EEG) measures will be collected at baseline and at the end of the 5-day treatment. Analyses will seek for changes in the CRS-R and the EEG metrics (e.g., alpha band power spectrum, functional connectivity) at the group and individual (i.e., responders) levels. Discussion: These results will allow us to investigate the vagal afferent network and will contribute towards a definition of the role of taVNS for the treatment of patients with DoC. We aim to identify the neural correlates of its action and pave the way to novel targeted therapeutic strategies. (AU)


Assuntos
Humanos , Estimulação do Nervo Vago , Transtornos da Consciência , Estado Vegetativo Persistente , Eletroencefalografia , Coma
4.
J Biophotonics ; 15(10): e202200028, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35703916

RESUMO

The measurement of birefringence variations related to nerve activity is a promising label-free technique for sensing compound neural action potentials (CNAPs). While widely applied in crustaceans, little is known about its efficiency on mammal peripheral nerves. In this work, birefringence recordings to detect CNAPs, and Stokes parameters measurements were performed in rat and lobster nerves. While single-trial detection of nerve activity in crustaceans was achieved successfully, no optical signal was detected in rats, even after extensive signal filtering and averaging. The Stokes parameters showed that a high degree of polarization of light is maintained in lobster sample, whereas an almost complete light depolarization occurs in rat nerve. Our results indicate that depolarization itself is not sufficient to explain the absence of birefringence signals in rats. We hypothesize that this absence comes from the myelin sheets, which constraint the birefringence changes to only take place at the nodes of Ranvier.


Assuntos
Bainha de Mielina , Nervos Periféricos , Potenciais de Ação/fisiologia , Animais , Birrefringência , Potenciais Evocados , Mamíferos , Nervos Periféricos/fisiologia , Ratos
5.
J Neural Eng ; 19(2)2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35172295

RESUMO

Objective.The purpose of this study is to localize the seizure onset zone of patients suffering from drug-resistant epilepsy. During the last two decades, multiple studies proposed the use of independent component analysis (ICA) to analyze ictal electroencephalogram (EEG) recordings. This study aims at evaluating ICA potential with quantitative measurements. In particular, we address the challenging step where the components extracted by ICA of an ictal nature must be selected.Approach.We considered a cohort of 10 patients suffering from extratemporal lobe epilepsy who were rendered seizure-free after surgery. Different sets of pre-processing parameters were compared and component features were explored to help distinguish ictal components from others. Quantitative measurements were implemented to determine whether some of the components returned by ICA were located within the resection zone and thus likely to be ictal. Finally, an assistance to the component selection was proposed based on the implemented features.Main results.For every seizure, at least one component returned by ICA was localized within the resection zone, with the optimal pre-processing parameters. Three features were found to distinguish components localized within the resection zone: the dispersion of their active brain sources, the ictal rhythm power and the contribution to the EEG variance. Using the implemented component selection assistance based on the features, the probability that the first proposed component yields an accurate estimation reaches 51.43% (without assistance: 24.74%). The accuracy reaches 80% when considering the best result within the first five components.Significance.This study confirms the utility of ICA for ictal EEG analysis in extratemporal lobe epilepsy, and suggests relevant features to analyze the components returned by ICA. A component selection assistance is proposed to guide clinicians in their choice for ictal components.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsias Parciais , Epilepsia Resistente a Medicamentos/diagnóstico , Epilepsia Resistente a Medicamentos/cirurgia , Eletroencefalografia/métodos , Humanos , Couro Cabeludo , Convulsões/diagnóstico
6.
J Neural Eng ; 18(5)2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33588393

RESUMO

Objective.Finite element modelling has been widely used to understand the effect of stimulation on the nerve fibres. Yet the literature on analysis of spontaneous nerve activity is much scarcer. In this study, we introduce a method based on a finite element model, to analyse spontaneous nerve activity with a typical bipolar electrode recording setup, enabling the identification of spontaneously active fibres. We applied our method to the vagus nerve, which plays a key role in refractory epilepsy.Approach.We developed a 3D model including dynamic action potential (AP) propagation, based on the vagus nerve geometry. The impact of key recording parameters-inter-electrode distance and temperature-and uncontrolled parameters-fibre size and position in the nerve-on the ability to discriminate active fibres were quantified. A specific algorithm was implemented to detect and classify APs from recordings, and tested on six ratin-vivovagus nerve recordings.Main results.Fibre diameters can be discriminated if they are below 3µm and 7µm, respectively for inter-electrode distances of 2 mm and 4 mm. The impact of the position of the fibre inside the nerve on fibre diameter discrimination is limited. The range of active fibres identified by modelling in the vagus nerve of rats is in agreement with ranges found at histology.Significance.The nerve fibre diameter, directly proportional to the AP propagation velocity, is related to a specific physiological function. Estimating the source fibre diameter is thus essential to interpret neural recordings. Among many possible applications, the present method was developed in the context of a project to improve vagus nerve stimulation therapy for epilepsy.


Assuntos
Estimulação do Nervo Vago , Nervo Vago , Potenciais de Ação/fisiologia , Animais , Análise de Elementos Finitos , Fibras Nervosas/fisiologia , Ratos , Nervo Vago/fisiologia
7.
J Neurosci Methods ; 343: 108832, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32619587

RESUMO

BACKGROUND: Vagus nerve stimulation is a treatment for refractory epilepsy. The vagus nerve carries parasympathetic information and innervates multiple organs. As seizures are commonly associated with autonomic manifestations, we believe that biomarkers for diseases affecting autonomic functions such as epilepsy can be found in vagus nerve signals. NEW METHOD: We present a method to record vagus nerve electroneurogram (VENG) and detect in the VENG single unit activity in anesthetized rats during Pentylenetetrazol induced seizures using a true tripolar cuff electrode. RESULTS: The VENG consisted of high amplitude bursts and lower amplitude bursts synchronous to respiration and heartbeat respectively. The average spikes exhibited a triphasic shape with duration below 1.5ms and root mean square amplitude varied between 5.5 +/- 0.2 µV and 11.4 +/- 3.1 µV depending on the type of recording. An increase of the contact distance resulted in a signal amplitude increase. Application of Lidocaine led to a total disappearance of the recorded spontaneous spiking of the nerve. COMPARISON WITH EXISTING METHODS: True tripolar cuff electrodes exhibited a better performance in terms of artefact rejection, stability and reproducibility of the signal compared to commonly used hook electrodes which is of special interest in seizures where important motion and EMG artifacts are expected. CONCLUSION: We present a new method to record single unit activity of the vagus nerve during acute chemically induced seizures in rats and verified the neural origin of the recorded signals. This recording method might be a powerful tool to develop seizure biomarkers based on VENG.


Assuntos
Pentilenotetrazol , Estimulação do Nervo Vago , Animais , Pentilenotetrazol/toxicidade , Ratos , Reprodutibilidade dos Testes , Convulsões/induzido quimicamente , Nervo Vago
8.
Epileptic Disord ; 19(4): 471-475, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29258969

RESUMO

Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis is an autoimmune disorder of the central nervous system that typically manifests predominantly as a psychiatric disorder. However, other manifestations such as epileptic seizures, abnormal movements, and memory or language complications are not unusual. Here, we report the case of a young man who presented with a new-onset epilepsy, with ictal semiology suggestive of insular involvement; this hypothesis was supported by a PET-CT study. Anti-NMDAR antibodies were found in the CSF, confirming the diagnosis of anti-NMDAR encephalitis. A review of the literature reveals that epilepsy can be the first manifestation of NMDAR encephalitis, with a clear male predominance. Despite its rarity, neurologists should consider this diagnosis for any young patient developing a new-onset epilepsy with temporal or insular features, particularly if the patient is male. Other cognitive or behavioural signs, even very subtle, should also prompt diagnosis.


Assuntos
Encefalite Antirreceptor de N-Metil-D-Aspartato/complicações , Córtex Cerebral/fisiopatologia , Epilepsia/etiologia , Adulto , Eletroencefalografia , Humanos , Masculino
9.
Epileptic Disord ; 19(4): 476-480, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29258971

RESUMO

Rasmussen encephalitis is a rare, devastating condition, typically presenting in childhood. Cases of adult-onset Rasmussen have also been described, but the clinical picture is less defined, rendering final diagnosis difficult. We present a case of adult-onset Rasmussen encephalitis with dual pathology, associated with focal cortical dysplasia and encephalitis. We interpreted the Rasmussen encephalitis to be caused by severe and continuous epileptic activity due to focal cortical dysplasia. The best therapeutic approach for such cases remains unclear.


Assuntos
Encéfalo/diagnóstico por imagem , Encefalite/etiologia , Malformações do Desenvolvimento Cortical/complicações , Adolescente , Eletroencefalografia , Encefalite/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética , Malformações do Desenvolvimento Cortical/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...